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ABSTRACT

We show that a Hopf algebroid can be reconstructed from a monoidal

functor from a monoidal category into the category of rigid bimodules

over a ring. We study the equivalence between the original category and

the category of comodules over the reconstructed Hopf algebroid.

Introduction

The Tannaka-Krein duality asserts that a compact group can be uniquely deter-

mined by the category of its finite dimensional unitary representations. Many

efforts have been made in generalizing this result, which also advance the de-

velopment of many branches of mathematics, such as C∗-algebras, harmonic

analysis, algebraic geometry. Especially, Tannaka-Krein duality was also one of

the sources of quantum groups.

The algebraic version of this theory was suggested by A. Grothendieck and

developed by Saavedra [16] and Deligne [2]. An important result of the algebraic

Tannaka-Krein theory is a theorem of Deligne, developing Saavedra’s ideas. It

states that there is a dictionary between tensor categories over a field k together

with an exact tensor functor (fiber functor) to the category of quasi-coherent

sheaves over a k-scheme S and transitive groupoids over S.
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The proof of Tannaka-Krein duality is divided into two parts, the (re)construc-

tion theorem which aims to reconstruct the group from the category of its repre-

sentations and the representation theorem which aims to prove the equivalence

between the original category and the category of representations of the recon-

structed group.

The idea of the reconstruction theorem was one of the motivations for Quan-

tum Groups. From this point of view a rigid monoidal category (without a

symmetry) corresponds to a quantum group. In fact, one can construct from a

rigid monoidal category together with a monoidal functor into the category of

finite-dimensional vector spaces (over k) a k-Hopf algebra, which is understood

as the “function algebra” over a quantum group. This idea was first proposed in

the work of Lyubashenko [8]. The Tannaka-Krein duality for compact quantum

groups was proved by Woronowicz [21]. Majid obtained the reconstruction the-

orem in a more general setting of a monoidal category and a monoidal functor

in to another braided monoidal category, see [12] and references therein.

In this more general setting, a Hopf algebra (in a braided monoidal category)

cannot be reconstructed from its representation (comodule) category. Usually,

the reconstructed Hopf algebra is bigger, see, for instance, [15]. Lyubashenko

[9] suggests reconstructing the Hopf algebra not lying in the target category

but rather in its tensor square. McCrudden [14] generalizes the duality to the

setting of higher categories.

An important ingredient of the Tannaka-Krein duality is the fiber functor.

One might ask, for which kind of monoidal categories do such functors exist.

An answer to this question can be called an embedding theorem. For a tensor

category over a field k of characteristic 0, P. Deligne [2] gave an interesting

criterion in terms of the categorical dimension. A parallel result for C∗ tensor

categories was given by Doplicher and Roberts [3].

In our previous work [4] an embedding theorem for arbitrary (rigid) monoidal

categories was given, but the embedding goes into the category of bimodules

over a ring. This result raises the problem of Tannaka-Krein duality for functors

with the category of bimodules over a ring as the target. However, according to

Schauenburg [18], it is generally impossible to construct a braiding in a bimodule

category, so one cannot apply Majid results to reconstruct a Hopf algebra in

this category.
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It turns out that one can reconstruct from the above data a Hopf algebroid

in the sense of Takeuchi, Lu and Schauenburg [19, 20, 7, 17]. This construction

is in a sense analogous to those of Lyubashenko [9] and Mccrudden [14].

Combining the Tannaka-Krein duality done here and the embedding theorem

of [4], we can realize a rigid category as the comodule category over a Hopf

algebroid defined over a certain ring (Corollary 2.2.7).

The paper is constructed as follows. In Section 1, we recall the notion of

Hopf algebroids defined over a ring. We define bialgebroid as a monoidal object

in the monoidal category of coalgebroids. Next, we recall a notion of antipode

and Hopf algebroids and prove some basic facts on dual comodules over Hopf

algebroids. This is the more technically difficult part of the work. In fact,

there are at least two definitions of antipode on a bialgebroid [7, 17]. In [7] the

definition of the antipode more or less imitates the usual antipode, in [17] the

antipode is defined as a condition for the coincidence of internal hom-functors

in the category of modules and in the underlying category of R-bimodules. Our

motivation for the antipode is the condition for the existence of dual comodules

over a bialgebroid. It is somewhat unexpected that the antipode introduced by

Schauenburg in [17] while studying duals of modules over a bialgebroid fits well

into our frame-work.

In Section 2, we prove the Tannaka-Krein duality for Hopf algebroids. Some

embedding and reconstruction results were also obtained by Hayashi [5, 6] for

face algebras, which were shown by Schauenburg to be a special case of Hopf

algebroids. Our result here is a generalization of Hayashi’s result.

1. Hopf algebroids and its comodules

Except for some results in Subsections 1.4 and 1.8, the materials of this section

are known, they can be found in [20, 7, 23, 17].

First we review some basic notions of rings and corings over an associative

ring. In Section 1.2 we recall the notion of coalgebroids which was first studied

by Takeuchi [20]. In Subsections 1.4 and 1.5 we study comodules over a coalge-

broid and prove some lemmas which will be needed in the sequel. In Subsection

1.6 we recall the notion of bialgebroids in the sense of [20, 7]. In 1.7 we define

the tensor product of two comodules over a bialgebroid and in 1.8 the dual to

a comodule.
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1.1. R-rings and R-corings. Let us fix a commutative ring k. Throughout

this paper, we will be working in the category of k-modules, in other words, we

shall assume that everything is k-linear.

Let R be an algebra over k, which will usually be fixed. The object of our

study is the category R-Bimod of R-bimodules. In this category, there is a

monoidal structure with the tensor product being the usual tensor product over

R. This tensor product is closed in the sense that there exist the right adjoint

functors to the functors M ⊗R − and − ⊗R M for all R-bimodules M , given

by HomR(M,−) and RHom(M,−), where HomR(−,−) (resp., RHom(−,−))

denotes the set of R-linear maps with respect to the right (resp., left) actions

of R.

Having the monoidal structure on R-Bimod we define R-rings and R-corings

as monoids and comonoids in this category. The data for an R-ring consist of an

R−R-linear map m : A⊗R A −→ A, called product, and an R−R-linear map

u : R −→ A called unit, satisfying the usual associativity and unity properties.

Set 1A := u(1R) and denote m(a ⊗ b) by a · b, then A is a k-algebra in the

usual sense. We notice that if R is commutative and A is an algebra over R in

the usual sense then it is an R-ring in our sense but the converse is not true

since the image of R under u is generally not in the center of A. In fact, any

(associative) k-algebra homomorphism R −→ A induces a structure of R-ring

over A.

R-corings are defined in the dual way. A structure of R-coring over an R-

bimodule C consists of anR−R-linear map ∆ : C −→ C⊗RC called coproduct

and an R−R-linear map ε : C −→ R, called counit, satisfying the usual coas-

sociativity and counity axioms. We shall use Sweedler’s notation for denoting

the coproduct:

∆(a) =
∑

(a)

a(1) ⊗ a(2).

A right C-comodule is a right R-module M equipped with an R-linear coaction

δ : M −→M ⊗R C, δ(m) =
∑

(m)m(0) ⊗m(1), satisfying

∑

(m)

δ(m(0))⊗m(1) =
∑

(m)

m(0) ⊗∆(m(1)) and
∑

(m)

m(0) ⊗ ε(m(1)) = m

(having in mind the identification M ⊗R R ∼= M). Notice that the R-linearity

of δ means δ(mr) =
∑

(m)m(0) ⊗m(1)r.
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1.2. R-Coalgebroids. We consider in this subsection the category R–

R-Bimod of double R-bimodules. That is, we will have two R-bimodule struc-

tures on a k-module, which commute with each other. To distinguish the two

structures we will denote the first one by σ and the second one by τ . Thus, we

have four actions:

R⊗k M −→M ; r ⊗M 7−→ σ(r)m, M ⊗k R −→M ; m⊗ r 7−→ mσ(r),

R⊗k M −→M ; r ⊗M 7−→ τ(r)m, M ⊗k R −→M ; m⊗ r 7−→ mτ(r),

There are several possibilities to take tensor products over R of R − R-

bimodules. We use the notation M τ⊗
σ N for the tensor product with respect

to the right action of M by τ and the left action on N by σ, i.e.,

M τ⊗
σ N := M ⊗k N

/(

mτ(r) ⊗ n = m⊗ σ(r)n
)

.

Here, the letters σ and τ on the two sides of the tensor sign denote correspond-

ingly the actions taken in the definition of the tensor product. Other tensor

products will be denoted in a similar way. The rule for notation is that the left

action will be placed in the upper place and the right action will be placed in

the lower place on the two sides of the tensor sign.

For the tensor product M τ⊗
σ N we specify the following actions to make it

an object in R−R-Bimod:

τ(a)(h ⊗ k) = h⊗ τ(a)k, (h⊗ k)τ(a) = h⊗ kτ(a),

σ(a)(h ⊗ k) = σ(a)h⊗ k, (h⊗ k)σ(a) = hσ(a)⊗ k.

Here we adopt the convention that the action of R has preference over the tensor

product.

Definition ([20]): An R-coalgebroid is an R − R-bimodule L equipped with

k-linear maps ∆ : L −→ L τ⊗
σ L, called coproduct, and ε : L −→ R, called

counit, satisfying the following conditions:

(i) ∆ is a morphism in R−R-bimod and (the coassociativity):

(idL τ⊗
σ ∆)∆ = (∆ τ⊗

σ idL)∆;

(ii) ε satisfies (the linearity with respect to the actions of R)

ε(σ(a)hτ(b)) = aε(h)b,

and (the counity)

(ε τ⊗
σ idL)∆ = (idL τ⊗

σ ε)∆ = idL;
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(iii) moreover, ε satisfies the following condition

ε(τ(a)h) = ε(hσ(a)).

Note that, by definition, ε is not necessarily a morphism of R−R-bimodules.

We shall use Sweedler’s notation for the coproduct: ∆(h) =
∑

(h) h(1) ⊗ h(2).

The linearity of ∆ now reads:

(1.1) ∆(τ(a)σ(b)hτ(c)σ(d)) =
∑

(h)

σ(b)h(1)σ(d)⊗ τ(a)h(2)τ(c).

Analogously, the counity condition has the following form

(1.2)
∑

(h)

σε(h(1))h(2) =
∑

(h)

h(1)τε(h(2)) = h.

Combining these equations, we have the following identities

(1.3) hσ(a) =
∑

(h)

σε
(

h(1)σ(a)
)

h(2); τ(a)h =
∑

(h)

h(1)τε
(

τ(a)h(2))
)

,

whence

(1.4) ε
(

τ(a)hσ(b)
)

=
∑

(h)

ε(h(1)σ(b))ε
(

τ(a)h(2)

)

.

Remark: The condition in (iii) can be replaced by the following (cf. [20, §3])

(1.5)
∑

(h)

τ(a)h(1) τ⊗
σ h(2) =

∑

(h)

h(1) τ⊗
σ h(2)σ(a).

This condition is equivalent to the existence of an anchor as in [23, 7]. In fact,

the algebra Endk(R) has a structure of an R − R-bimodule, we specify it as

follows:
(

σ(a)fσ(b)
)

(c) := af(bc),
(

τ(a)fτ(b)
)

(c) = f(ca)b.

Then, the counity induces a morphism of R−R-bimodules η : L −→ Endk(R),

given by η(h)(a) := ε(τ(a)h) = ε(hσ(a)). The map η is called an anchor [23, 7]

(this map is generally different from a map, also denoted by η, introduced in

[20, §3]).
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1.3. An example. Let M be a right R-module. Then M∗ is a left R-module

with the action given by

(rϕ)(m) := r(ϕ(m)); r ∈ R,m ∈M,ϕ ∈M∗.

If M is finitely generated (f.g.) projective, M is a direct summand of R⊕d con-

sidered as right module over R, then M∗ is a direct summand of R⊕d considered

as left module over R. Further, if we fix a generating set m1,m2, . . . ,md given

by the projection from R⊕d then we can find a generating set ϕ1, ϕ2, . . . , ϕd for

M∗ such that for any m ∈M , the following equation holds

(1.6) m =

d
∑

i=1

miϕ
i(m).

We define the following map

evk,M : M∗ ⊗k M → R; ϕ⊗m 7→ ϕ(m),(1.7)

dbk,M : k →M ⊗R M∗; 1 7→
∑

i

mi ⊗ ϕ
i.(1.8)

Notice that evk,M is a morphism ofR-bimodules: evk,M (rϕ⊗ms) = (rϕ)(ms) =

rϕ(m)s. The equation in (1.6) implies the following relations for ev = evk,M

and db = dbk,M

(1.9) (ev⊗R idM∗)(idM∗ ⊗k db) = idM∗ ; (idM ⊗R ev)(db⊗k idM ) = idM .

Conversely, if there exists to a right R-module M a left R-module M∨ and

morphisms ev : M∨⊗kM → R and db : k→M⊗RM
∨, satisfying the identities

in (1.9) then R is f.g. projective. Indeed, we have by means of (1.9) the following

natural isomorphism

HomR(P ⊗k M,N) ∼= Homk(P,N ⊗R M∨); f 7→ (f ⊗R idM∨)(idP ⊗k dbM ).

From the canonical isomorphism HomR(P⊗kM,N) ∼= Homk(P,HomR(M,N)),

we deduce a functorial isomorphism

N ⊗R M
∨ ∼= HomR(M,N).

Since the functor − ⊗R M∨ is right exact, M is projective. Setting N = R

in the isomorphism above we obtain isomorphism M∨ ∼= HomR(M,R) = M∗,

by means of which the map ev is given by ev(ϕ ⊗m) = ϕ(m). For N = M ,

the identity map idM corresponds to the element db(1) =
∑d

i=1mi ⊗ ϕ
i, with

the property m =
∑d

i=1miϕ
i(m), for all m ∈ M . Hence {mi} generate M
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and {ϕi} generate M∗. We call the pair {mi}, {ϕ
i} dual bases with respect to

db = dbk,M . In particular we have proved

Lemma 1.3.1: Let M be an f.g. projective right R-module. Denote the action

of R on M by τ and the one on M∗ by σ. Then M∗ ⊗k M is an R-bimodule

and evk,M is an R-bimodule homomorphism.

Assume now that M is anR-bimodule which is f.g. projective as an R-module.

The the left action R on M induces a right action of R on M∗ = HomR(M,R):

(ϕr)(m) := ϕ(rm).

For all r ∈ R, m ∈M , we have

∑

i

rmiϕ
i(m) = rm =

∑

i

miϕ
i(rm) =

∑

i

mi(ϕ
ir)(m),

hence

(1.10)
∑

i

rmi ⊗ ϕ
i =

∑

i

mi ⊗ ϕ
ir.

Therefore, the map dbk,M extends to a map dbM : R → M ⊗R M∗ of R-

bimodules. On the other hand, we also have an R-bimodule map evM : M∗⊗R

M → R, ϕ ⊗ m 7→ ϕ(m), since ϕ(rm) = (ϕr)(m). It is easy to check the

following identities for evM and dbM :

(1.11)

(evM ⊗R idM∗)(idM∗ ⊗R dbM ) = idM∗ ; (idM ⊗R evM )(dbM ⊗R idM ) = idM .

In the language of monoidal categories we call such an R-bimodule M a left

rigid object (in R-Bimod) and M∗ the left dual to M .

We also have the notion of right dual to a left R-module as well as the notion

of right rigid R-bimodules. In particular, the dual bimodule M∗ to M , if it

exists, is right rigid and the right dual to M∗ is M .

We define now the stucture of an R-coring onM∗⊗kM for a finitely generated

projective right R-module M . Denote by τ the action of R on M∗⊗k M which

is given by the action of R on M and denote by σ the action on M∗⊗kM which

is given by the action on M∗. Set

∆ := idM∗ ⊗k dbk,M ⊗k idM∗ : M∗ ⊗k M →M∗ ⊗k M ⊗R M∗ ⊗k M,
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and ε := evk,M . It follows immediately from (1.9) that M∗⊗kM is an R-coring.

If, moreover,M is an R-bimodule, then there are four actions of R on M∗⊗kM .

Thus we have proved

Lemma 1.3.2: Let M be an R-bimodule which is f.g. projective as a right R-

module. Denote the actions of R on M∗ ⊗k M induced from those on M by

τ and the actions of R on M∗ ⊗k M induced from those on M∗ by σ. Then

(M∗ ⊗k M, evk,M ) is an R-coalgebroid.

In particular, R ⊗k R is an R-coalgebroid, the actions of R on R ⊗k R are

specified as follows:

σ(a)τ(b)(m ⊗ n)σ(c)τ(d) = amc⊗ bnd.

1.4. Comodules over coalgebroids. Let M be a right R-module and L be

an R-coalgebroid. Denote by τ the right action of R on M . We form the tensor

product M τ⊗
σ L. On this module there are three actions of R, induced from

its actions on L. A coaction of L on M is a map δ : M −→M τ⊗
σL, satisfying

the following conditions:

δ(mτ(a)) = δ(m)τ(a) (the linearity on R),

(δ τ⊗
σ idL)δ = (idM τ⊗

σ ∆)δ (the coassociativity),

(idM τ⊗
σ ε)δ = idL (the unity).

In other words, M is a comodule over the R-coring L with respect to the (σ, τ)

action (R acts on the left by σ and on the right by τ). We use Sweedler’s

notation for the coaction δ(m) =
∑

(m)m(0) τ⊗
σ m(1). Analogously, for a left

R-module M with the action denoted by σ, we can define the notion of a left

coaction of L on M .

Example: For an R-bimodule M which is f.g. projective as right module, M

is a right comodule over L = M∗ ⊗k M and M∗ is a left comodule over L.

The action is given as follows: δ(m) =
∑

imi ⊗R (ϕi ⊗k m). In particular, for

M = R, the coaction of R ⊗k R on R is given by δ(a) = 1 ⊗R (1 ⊗k a). Note

that in this definition, we cannot move a to the left, i.e., δ(a) 6= a ⊗ (1 ⊗ 1),

unless a is in k.
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Let L be an R-coalgebroid and M a right comodule over L. We set

(1.12) τ(a)m :=
∑

(m)

m(0)τε
(

τ(a)m(1)

)

.

This definition does not depend on the choice of m(0) and m(1). Indeed, we

have, for m ∈M , l ∈ L, a, b ∈ R,

mτ(b)τε
(

τ(a)l
)

= mτε
(

σ(b)τ(a)l
)

= mτε
(

τ(a)(σ(b)l)
)

.

Lemma 1.4.1: Let L be an R-coalgebroid. Then the action defined in (1.12)

makes M an R-bimodule. δ is R-linear with respect to this new action on M

and the action on M τ⊗
σ L specified above, i.e.,

δ(τ(a)m) =
∑

(m)

m(0) ⊗ τ(a)m(1).

Furthermore, δ satisfies the equation

(1.13)
∑

(m)

τ(a)m(0) ⊗m(1) =
∑

(m)

m(0) ⊗m(1)σ(a).

Conversely, a left action on M of R with respect to which δ is linear in the

above sense is uniquely given by the formula in (1.12).

The proof contains lengthy verifications using definitions and the relations in

(1.3,1.4,1.5,1.13) and will be omitted.

Remark: By virtue of Lemma 1.4.1, by a (right) comodule over an R-algebroid

L we shall understand an R-bimodule equipped with a coaction δ satisfying

the conditions of this lemma. It is however not true that if M is a right L-

comodule and N is an R-bimodule, then N ⊗R M is an L-comodule for this

would contradict Lemma 1.4.1.

Analogously, we have a notion of left L-comodules. Sweedler’s notation for

δ : M −→ L τ⊗
σ M reads δ(ϕ) =

∑

(ϕ) ϕ(−1) τ⊗
σ ϕ(0). As in the case of right

comodules, we can define a right action of R on a left L-comodule

(1.14) ϕσ(a) :=
∑

(ϕ)

σε
(

ϕ(−1)σ(a)
)

ϕ(0).

This action is well-defined and an analog of Lemma 1.4.1 holds:

(1.15)
∑

(ϕ)

τ(a)ϕ(−1) ⊗ ϕ(0) =
∑

(ϕ)

ϕ(−1) ⊗ ϕ(0)σ(a).
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Lemma 1.4.2: Let M be a right L-comodule which is f.g. projective as a right

module over R. Then there is a left coaction of L on M∗ given by the condition

∑

(ϕ)

ϕ(−1)τϕ(0)(m) =
∑

(m)

σϕ(m(0))m(1).

This correspondence is one-to-one between right L-comodules, f.g. projective as

right R-modules and left L-comodules, f.g. projective as left R-modules.

Proof. Given a right L-comodule M . The coaction on M∗ is given by

M∗
δ //

id⊗dbk,M

��

L τ⊗
σ M∗

M∗ ⊗k M τ⊗
σ M∗

id⊗δ⊗id
// M∗ ⊗k (M τ⊗

σ L) τ⊗
σ M∗.

evk,M⊗id

OO

More explicitly, let mi and ϕi, i = 1, 2, . . . , d be a pair of dual bases in M and

M∗ respectively. The coaction on M∗ is given by

δ(ϕ) =
∑

i

σϕ(mi(0))mi(1) ⊗ ϕ
i.

The verification is straightforward.

Conversely, given a left coaction δ : M −→ L τ⊗
σ M , where M is an f.g. pro-

jective left R-module, one defines a right coaction of L on the right dual ∗M by

the condition
∑

(m)m(−1)τη(m(0)) =
∑

(η) ση(0)(m)η(1). It is explicitly given

by

∗M

dbk,∗M⊗id

��

δ // ∗M τ⊗
σ L

∗M τ⊗
σ M ⊗k

∗M
id⊗δ⊗id

// ∗M τ⊗
σ (L τ⊗

σ M)⊗k
∗M

id⊗evk,∗M

OO

1.5. Tensor products of coalgebroids. R-coalgebroids form a category in

a natural way: morphisms between two coalgebroids are those R−R-bimodules

maps that commute with ∆ and ε. In this section, we introduce a tensor product

in this category. Let � denote the tensor product σ
τ⊗

τ
σ, which is given precisely

by

Lσ
τ⊗

τ
σK = L⊗k K

/(

σ(a)hτ(b) ⊗ k = h⊗ τ(b)kσ(a)
)

,
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for R − R-bimodules L and K. In other words, we have the following relation

in L�K : ∀h ∈ L, k ∈ K,

(1.16) σ(a)hτ(b) � k = h� τ(b)kσ(a).

We specify the following actions of R on L�K:

σ(a)(h� k)σ(b) = hσ(b) � σ(a)k,

τ(a)(h � k)τ(b) = τ(a)h � kτ(b).

Here we adopt the convention that the action of R has preference over the tensor

product.

Let L and K be R-coalgebroids. Define the k-linear maps

∆̄ : L�K −→ (L �K) τ⊗
σ (L�K) and ε̄ : L�K −→ R

by

∆̄(h� k) =
∑

(h),(k)

(

h(1) � k(1)

)

τ⊗
σ

(

h(2) � k(2)

)

and ε̄(h� k) = ε(kσε(h)).

The maps ∆̄ and ε̄ are well-defined and they define a coalgebroid structure on

L�K (cf. [20, 3.10]). Recall that R⊗kR is an R-coalgebroid with the following

R−R-bimodule structure

σ(a)τ(b)(m ⊗ n)σ(c)τ(d) = amc⊗ bnd.

The category of R-coalgebroids is a monoidal category, with the unit object

being R⊗k R.

1.6. R-bialgebroids. Since the category of R-coalgebroids is monoidal, we

have the notion of monoids in this category, which are called R-bialgebroids.

More explicitly, an R-bialgebroid L is a coalgebroid equipped with the following

morphisms of R−R-bimodulesm : L�L −→ L and u : R⊗kR −→ L, satisfying

∆m = (m τ⊗
σ m)∆̄; εm = ε̄;(1.17)

∆u = u τ⊗
σ u; εu(a⊗ b) = ab;(1.18)

m(idR⊗kR �m) = m(m� idR⊗kR);(1.19)

m(idR⊗kR � u) = m(u� idR⊗kR) = idL,(1.20)

where we use the identification L � (R ⊗k R) ∼= L ∼= (R ⊗k R) � L, which is

given explicitly by

(1.21) h� (a⊗ b)←→ σ(a)hτ(b); (a⊗ b) � h←→ τ(b)hσ(a).
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Denoting h ◦ k = m(h� k) and using Sweedler’s notation, we have

(1.22)

σ(a)hτ(b) ◦ k = h ◦ τ(b)kσ(a), ε(h ◦ k) = ε(kσ(h))

∆(h ◦ k) =
∑

(h)(k)

h(1) ◦ k(1) τ⊗
σ h(2) ◦ k(2); ∆(1L) = 1L τ⊗

σ 1L,

bearing in mind the preference of ◦ over ⊗, where 1L := u(1R ⊗k 1R). On the

other hand, the linearity of m and u can be expressed as

(1.23) σ(a)τ(b)(h ◦ k)τ(c)σ(d) = τ(b)hσ(d) ◦ σ(a)kτ(c),

where we adopt the convention that the action of R has preference over the

product.

We define the maps s and t from R to L as follows

s(a) = σ(a)1L = 1Lσ(a); t(a) = τ(a)1L = 1Lτ(a).

The relations below follow immediately from (1.20) (or from (1.23))

(1.24)
s(a) ◦ h = hσ(a); h ◦ s(a) = σ(a)h;

h ◦ t(a) = hτ(a); t(a) ◦ h = τ(a)h.

In particular, s is an anti-homomorphism and t is a homomorphism of k-algebras

from R −→ L.

Bialgebroids over associative algebras seem to be first introduced by Takeuchi

[19] and later independently introduced by J. Lu [7].

1.7. Comodules over bialgebroids. A comodule over a bialgebroid is by

definition a comodule over the underlying coalgebroid. We have seen in Subsec-

tion 1.4 that a right comodule over an R-coalgebroid, which is initially a right

R-module, can be endowed with a structure of left R-module. In this subsection

we show that the tensor product of two comodules over a bialgebroid is again

a comodule.

Let M,N be right comodules over an R-bialgebroid L. Define a coaction of

L on M ⊗R N

δ(m⊗ n) =
∑

(m)(n)

m(0) ⊗ n(0) ⊗m(1) ◦ n(1).

Lemma 1.7.1: The coaction given above is well-defined and makes M ⊗R N a

comodule over L.
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Notice that R itself is a comodule over L by means of the morphism t defined

in Subsection 1.6: δ(a) = 1⊗ t(a) = 1⊗ τ(a)1H .

Corollary 1.7.2: The category of comodules over a bialgebroid is monoidal

with the unit object being R.

1.8. The antipode. Consider the tensor product H σ⊗σ H defined as follows

H σ⊗σ H := H ⊗k H
/(

σ(a)h⊗ k = h⊗ kσ(a)
)

and specify the actions of R as follows

τ(a)(h⊗ k)τ(b) = τ(a)h ⊗ kτ(b); σ(a)(h ⊗ k)σ(b) = hσ(b)⊗ σ(a)k.

There is an R − R-bimodule morphism π : H σ⊗σ H −→ H � H, which is a

quotient map.

Definition (cf. [17]): Let H be an R-bialgebroid. An antipode on H is by defini-

tion a map ∇ : H −→ H σ⊗σH ;∇(h) =
∑

(h) h
− σ⊗σh

+, satisfying the following

conditions:
∑

(h)

h− ◦ h+
(1) τ⊗

σ h+
(2) = 1 τ⊗

σ h(1.25)

∑

(h)

h(1) ◦ h(2)
− σ⊗σ h(2)

+ = 1 σ⊗σ h.(1.26)

If such an antipode exists, H is called a Hopf algebroid.

Define a map β : H σ⊗σ H −→ H τ⊗
σ H to be

(1.27) H σ⊗σ H

id⊗∆

��

β // H τ⊗σ H

H σ⊗σ (H τ⊗
σ H)

∼= // (H σ⊗σ H) τ⊗
σ H

π // (H �H) τ⊗
σ H

m⊗id

OO

β (h σ⊗σ k) =
∑

(k)

h ◦ k(1) τ⊗
σ k(2).

Then we have

β
(

∑

(k) h ◦ k
− σ⊗σ k

+
)

=
∑

(k) h ◦ k
− ◦ k+

(1) τ⊗
σ k+

(2) = h τ⊗
σ k by (1.25)

and
∑

(k)

h ◦ k(1) ◦ k(2)
− σ⊗σ k(2)

+ = h τ⊗
σ k by (1.26) .
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Therefore the map β is invertible with the inverse given by

(1.28) β−1(h τ⊗
σ k) =

∑

(k)

h ◦ k− σ⊗σ k
+.

We have ∇(h) = β−1(1 ⊗ h), whence ∇ is uniquely determined. Thus, if an

antipode exists, then it is determined uniquely.

Remark: If R = k and H is a Hopf algebra over k, then ∇ is given explicitly by

∇(h) =
∑

(h) S(h(1))⊗ h(2) where S denotes the antipode of H .

Lemma 1.8.1 ([17, Proposition 3.7]): Let H be a Hopf algebroid. Then the

antipode ∇ satisfies the following relations:

∇(1H) = 1H ⊗ 1H ,(1.29)

∇(τ(a)σ(b)hσ(c)τ(d)) =
∑

(h)

τ(b)h−τ(c) ⊗ τ(a)h+τ(d),(1.30)

∑

(h)

h(1)
− σ⊗σ h(1)

+
τ⊗

σ h(2) =
∑

(h)

h− σ⊗σ h
+

(1) τ⊗
σ h+

(2),(1.31)

∑

(h)

h− σ⊗τ h
+− σ⊗σ h

++ =
∑

(h)

h−(2)
σ⊗τ h

−
(1)

σ⊗σ h
+,(1.32)

∑

(h)

h+σ(ε(h−)) = h,(1.33)

∑

(h)

h− ◦ h+ = 1Hτε(h).(1.34)

Proof. Applying β on both sides of equations (1.29) and (1.30) we obtain the

identity maps. Thus, the equalities follows from the invertibility of β.

Applying β on the first two tensor components of both sides of (1.31) and

using (1.25), we obtain the same values. Thus the equality also follows from

the invertibility of β.

We prove (1.32). Let β̄ be the map H σ⊗τ H
σ⊗σ H −→ H τ⊗

σ H τ⊗
σ H ;

β̄(h σ⊗τ k
σ⊗σ l) = k ◦ l(1) τ⊗

σ h ◦ l(2) τ⊗
σ l(3)

β̄ is also invertible with the inverse given by

β̄−1(k τ⊗
σ h τ⊗

σ l) = h ◦ l− σ⊗τ k ◦ l
+− σ⊗σ l

++.
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Applying β̄ to the right-hand side of (1.32) we obtain:
∑

(h)

h−(1) ◦ h
+

(1) τ⊗
σ h−(2) ◦ h

+
(2) τ⊗

σ h+
(3)

= (h− ◦ h+
(1))(1) τ⊗

σ (h− ◦ h+
(1))(2) τ⊗

σ h+
(2) by (1.22)

= 1 τ⊗
σ 1 τ⊗

σ h.

On the other hand, applying β̄ to the left-hand side of (1.32), we obtain
∑

(h)

(h+)− ◦ (h+)+(1) τ⊗
σ h− ◦ (h+)+(2) τ⊗

σ (h+)+(3)

=
∑

(h)

1 τ⊗
σ h− ◦ h+

(1) τ⊗
σ h+

(2) by (1.25)

= 1 τ⊗
σ 1 τ⊗

σ h.

The invertibility of β̄ implies the equality in (1.32).

(1.33) follows from (1.26). Indeed, we have

h =
∑

(h)

h(2)
+σε(h(1) ◦ h(2)

−) = h(2)
+σε

(

h(2)
−σε(h(1))

)

= h(2)
+σε

(

τε(h(1)h(2)
−)

)

by condition (iii) for ε

= h+σε(h−) by (1.30) for τ(b) and by (1.2).

(1.34) also follows immediately from (1.25) and (1.2).

Proposition 1.8.2: LetH be anR-Hopf algebroid andM a rightH-comodule.

Assume that M is an f.g. projective right R-module. Then there exists a coac-

tion of H on M∗ making it the dual object to M in the category of right

H-comodules.

Proof. We first define a coaction of H on M∗. The right coaction of H on

M induces the left coaction of H on M∗: ∂(ϕ) =
∑

(ϕ) ϕ(−1) τ⊗
σ ϕ(0) by the

condition

(1.35)
∑

(ϕ)

ϕ(−1)τϕ(0)(m) =
∑

(m)

σϕ(m(0))m(1).

Define a right coaction of H on M∗ as follows

(1.36) δ(ϕ) :=
∑

(ϕ)

σε
(

ϕ(−1)
+
)

ϕ(0) σ⊗
σ ϕ(−1)

−.
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We will show that this is a well-defined coaction ofH and that with this coaction

M∗ is a dual H-comodule to M .

It is easy to check that this coaction is well-defined, i.e., it does not depend

on the choice of ϕ(0), ϕ(−1) and ϕ(−1)
−, ϕ(−1)

+. We show that δ is a coaction.

For simplicity we shall use the notation φ := ϕ(−1). Notice that

∑

(ϕ)

ϕ(−2) τ⊗
σ ϕ(−1) τ⊗

σ ϕ(0) =
∑

(ϕ)(φ)

φ(1) τ⊗
σ φ(2) τ⊗

σ ϕ(0).

The coassociativity of δ amounts to the following equation

∑

(ϕ)

σε
(

φ(2)
+
)

ϕ(0) σ⊗
σ τε

(

φ(1)
+
)

φ(2)
−

τ⊗
σ φ(1)

−

=
∑

(ϕ)

σε
(

φ+
)

ϕ(0) σ⊗
σ

(

φ−
)

(1) τ⊗
σ

(

φ−
)

(2)
.

Applying ∇ on the last term of (1.31) and taking in account (1.30), we obtain

the equality

∑

(h)

h(1)
− σ⊗σ h(1)

+
τ⊗

τ h(2)
− σ⊗σ h(2)

+

=
∑

(h)

h− σ⊗σ h
+

(1) τ⊗
τ (h+

(2))
− σ⊗σ (h+

(2))
+.

Therefore, for h = φ = ϕ(−1), we have

∑

(ϕ)

σε
(

φ(2)
+

)

ϕ(0) σ⊗
σ τε

(

φ(1)
+
)

φ(2)
−

τ⊗
σ φ(1)

−

=
∑

(ϕ)

σε
(

(

φ+
(2)

)+
)

ϕ(0) σ⊗
σ τε

(

φ+
(1)

)

(

φ+
(2)

)−

τ⊗
σ φ−

=
∑

(ϕ)

σε

(

(

σε
(

φ+
(1)

)

φ+
(2)

)+
)

ϕ(0)

σ⊗
σ

(

σε
(

φ+
(1)

)

φ+
(2)

)−

τ⊗
σ φ− (by (1.30))

=
∑

(ϕ)

σε
(

(φ+)+
)

ϕ(0) σ⊗
σ (φ+)− τ⊗

σ φ− (by (1.2))

=
∑

(ϕ)

σε
(

φ+
)

ϕ(0) σ⊗
σ

(

φ−
)

(1) τ⊗
σ

(

φ−
)

(2)
(by (1.32)).
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The counity amounts to the following equation

ϕ =
∑

(ϕ)

σε(φ+)ϕ(0)σε(φ
−).

Indeed, by (1.14)
∑

(ϕ)

(

σε
(

φ+
)

ϕ(0)

)

σε(φ−) =
∑

(ϕ)

σε
[(

σε
(

φ(1)
+
)

φ(2)

)

σε
(

φ(1)
−

)

]

ϕ(0)

=
∑

(ϕ)

σε
[(

σε
(

φ+
(1)

)

φ+
(2)

)

σε
(

φ−
)

]

ϕ(0) by (1.31)

=
∑

(ϕ)

σε
(

φ+σε
(

φ−
))

ϕ(0) by (1.33)

=
∑

(ϕ)

σε
(

ϕ(−1

)

ϕ(0) = ϕ.

Similar computation shows that the left action of R on M∗, which is induced

from the right coaction of H as in (1.12) is just the natural one:

(a, ϕ) 7−→ σ(a)ϕ : [σ(a)ϕ](m) = aϕ(m).

Thus, Lemma 1.4.1 applies and the equation in (1.13) has the form

(1.37) σ(a)σε(φ+)ϕ(0) σ⊗
σ φ− = σε(φ+)ϕ(0) σ⊗

σ φ−σ(a)

Finally, we show that M∗ equipped with this coaction is a left dual comodule

to M , which amounts to showing that

ev : M∗
σ⊗

τ M −→ R and db : R −→M τ⊗
σ M∗

are morphisms of H-comodules. Choose a pair of dual bases on M and M∗,

{mi} and {ϕi}, and denote for simplicity φ := ϕ(−1) and φi := ϕi
(−1). We have

to check the following equations:

(1.38)
∑

(ϕ)

ε
(

φ+
)

ϕ(0)(m(0)) τ⊗
σ

(

φ− ◦m(1)

)

= 1 τ⊗
σ 1τϕ(m),

(1.39)
∑

i,(ϕi)

mi(0) τ⊗
σ σε

(

φi+
)

ϕi
(0) τ⊗

σ
(

mi(1) ◦ φ
i−

)

=
∑

i

mi τ⊗
σ ϕi

τ⊗
σ 1H

Notice that (1.39) is equivalent to the following: for all ϕ ∈M∗,

(1.40)
∑

i,(ϕi)

σϕ(mi(0))σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

mi(1) ◦ φ
i−

)

= ϕ τ⊗
σ 1H .

We prove (1.38):
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∑

(ϕ)

ε
(

φ+
)

ϕ(0)(m(0)) τ⊗
σ

(

φ− ◦m(1)

)

=
∑

(ϕ)

ε
(

φ+
)

τ⊗
σ

(

φ− ◦ σϕ(0)(m)m(1)

)

by (1.23)

=
∑

(ϕ)

ε
(

φ(1)
+

)

τ⊗
σ

(

φ(1)
− ◦ φ(2)τϕ(0)(m)

)

by (1.35)

=
∑

(ϕ)

ε
(

φ+
(1)

)

τ⊗
σ

(

φ− ◦ φ+
(2)τϕ(0)(m)

)

by (1.31)

=
∑

(ϕ)

1 τ⊗
σ

(

φ− ◦
(

σε
(

φ+
(1)

)

φ+
(2)

))

τϕ(0)(m) by (1.23)

=
∑

(ϕ)

1 τ⊗
σ (φ− ◦ φ+)τϕ0(m) by (1.34)

= 1 τ⊗
σ 1τϕ(m).

For (1.40), we first notice that, on applying δ on both sides of the equations

ϕ =
∑

i σϕ(mi)ϕ
i, we have

(1.41)
∑

(ϕ)

σε
(

φ+
)

ϕ(0) ⊗ φ
− =

∑

i,(ϕi)

σε
(

φi+
)

ϕi
(0) ⊗ τϕ(mi)φ

i−.

Now, the left hand side of (1.40) is equal to
∑

i,(ϕ)

σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

mi(1) ◦ φ
i−σϕ(mi(0))

)

by (1.37)

=
∑

i,(ϕ)

σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

σϕ(mi(0))mi(1) ◦ φ
i−

)

by (1.22)

=
∑

i,(ϕ)

σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

φτϕ(0)(mi) ◦ φ
i−

)

by (1.35)

=
∑

i,(ϕ)

σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

φ ◦ τϕ(0)(mi)φ
i−

)

=
∑

i,(ϕ)

σε
(

φi+
)

ϕi
(0) τ⊗

σ
(

φ(1) ◦ φ
−

)

by (1.41)

=
∑

(ϕ)

σε
(

φ
)

ϕ(0) τ⊗
σ 1H by (1.41)

= ϕ τ⊗
σ 1H .

The proof is complete.
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1.9. The opposite antipode. We have seen that for a Hopf algebroid, each

comodule which is f.g. projective over R possesses a left dual. As we know in

the case of Hopf algebras, a right dual can be defined in terms of the inverse to

the antipode, i.e., if the antipode is bijective, each finite dimensional comodule

possesses a right dual. A (sufficient) condition for the existence of the right

dual to a f.g. projective comodule of a Hopf algebroid can be expressed as the

existence of a map generalizing the map h 7−→ S−1(h(2))⊗h(1) for Hopf algebras

(see Remark in Subsection 1.8).

Definition: Let H be a bialgebroid. An opposite antipode is a map

∇op : H −→ H τ⊗
τ H , ∇op(h) :=

∑

(h) h− τ⊗
τ h+, satisfying the following

axioms:

∑

(h)

h+(1) τ⊗
σ h− ◦ h+(2) = h τ⊗

σ 1

∑

(h)

h(2) ◦ h(1)− τ⊗
τ h(1)+ = 1 τ⊗

τ h.

Lemma 1.9.1: Let H be a bialgebroid with an opposite antipode ∇op. Define

a map γ : H τ⊗
τ H −→ H τ⊗

σ H , γ(h ⊗ k) =
∑

k(1) τ⊗
σ h ◦ k(2). Then γ is

invertible with the inverse given by γ−1(h τ⊗
σ k) =

∑

k ◦ h− τ⊗
τ h+. Further

the map ∇op satisfies the following equations:

∇op(τ(a)σ(b)hσ(c)τ(d) =
∑

(h)

σ(a)h−σ(d) τ⊗
τ σ(b)h+σ(c)

∑

(h)

h+(1) τ⊗
σ h+(2)

τ⊗τ h− =
∑

(h)

h(1) τ⊗
σ h(2)+

τ⊗τ h(2)−

∑

(h)

h+ τ⊗
σ h+− τ⊗

τ h++ =
∑

(h)

h−(1) τ⊗
σ h−(2) τ⊗

τ h+.

Consequently, the opposite antipode is determined uniquely.

We call a bialgebroid equipped with an opposite antipode opposite Hopf

algebroid.

Proposition 1.9.2: Let H be an opposite R-Hopf algebroid and

δ : M −→M τ⊗
σ H
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a right coaction of H on M . Then the opposite antipode induces a left coaction

of H on M , M −→ H τ⊗
τ M , given by

m 7−→
∑

m(1)− τ⊗
τ m(0)τε(m(1)+).

Assume that M is an f.g. projective left R-module with the right dual ∗M . Then

there exists a coaction ρ : ∗M −→ ∗M σ⊗
σ H , η 7−→

∑

(η) η(0) ⊗ η(1), making it

a right dual H-comodule to M . ρ is given by the following condition

∑

(m)(η)

m(1)−τη(m(0)τε(m(1)+)) =
∑

(m)(η)

ση(0)
(

m(0)τε(m(1))
)

η(1).

The proof of these facts is left to the reader.

2. The Tannaka-Krein duality

2.1. Tannaka-Krein duality for corings. We fix as in Section 1 a com-

mutative ring k and assume that everything is k-linear. Let R be a k-algebra.

The Tannaka-Krein duality for R-corings was proved by P. Deligne [2]. Our

presentation here follows A. Bruguières [1].

Let C be a category and F : C −→ Mod-R be a functor to the category of

right R-modules. We define the Coend of F to be an R-bimodule L satisfying

the following universal property: for any R-bimodule C, there is a natural

isomorphism

(2.1) NatR(F ,F ⊗R C) ∼= RHomR(L,C).

Here we use the convention of Subsection 1.1 for the Hom. By the universal

property, L, if it exists, is uniquely determined up to an isomorphism.

If the image of F lies in the subcategory of right f.g. projective R-modules,

L can be constructed as follows. First notice that for any R-bimodule C and

any object X ∈ C, we have by means of the projectivity of F(X)

HomR(F(X),F(X)⊗R C) ∼= RHomR(F(X)∗ ⊗k F(X), C).

Thus we form the direct sum

(2.2) L0 :=
⊕

X∈C

F(X)∗ ⊗k F(X)
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and for any morphism f : X → Y in C, consider the (inner) diagram of R-

bimodule maps

(2.3) F(Y )∗ ⊗k F(X)
F(f)∗⊗id//

id⊗F(f)

��

F(X)∗ ⊗k F(X)

��

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

F(Y )∗ ⊗k F(Y ) //

++XXXXXXXXXXXXXXXXXXXXXXXXXXX
L0

&&M
M

M
M

M
M

M

L.

Let L be the maximal quotient R-bimodule of L0 which makes all the above

(outer) diagrams commute. Then it is easy to see that theR-bimodule L satisfies

the universal property in (2.1).

We will show that L is an R-coring in the sense of Subsection 1.1. As in

Subsection 1.3 we denote the actions of R on F(X) by τ and the actions on its

dual by σ. Thus F(X)∗ ⊗k F(X) is an R-bimodule by means of the actions τ

and σ. The actions of R on L0 and L will be named in the same way.

Set C = L in (2.1). Then the identity L → L corresponds through the

isormophism in (2.1) to a natural transformation δ : F −→ F ⊗R L. For an

arbitrary natural transformation ρ : F −→ F ⊗R C, the naturality of (2.1) on

C implies that the corresponding morphism fρ : L −→ C satisfies

(2.4) ρ = (id⊗ fρ)δ.

For C = L τ⊗
σ L the natural morphism

(δ ⊗ id)δ : F → F ⊗R L τ⊗
σ L

corresponds though the isomorphism in (2.1) to a morphism ∆ : L −→ L τ⊗
σL,

which according to (2.4) satisfies

(δ ⊗ id)δ = (id⊗∆)δ.

For C = R, the identity transformation corresponds to a morphism: ε : L −→

R. It is easy to show that (L,∆, ε) is an R-coring.

Lemma 2.1.1: Through the isomorphism in (2.1), if δ ∈ Nat(F ,F ⊗R C) is a

family of coactions of an R-coring C, then the corresponding morphism L −→ C

is a morphism of R-corings.
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Proof. Let ϕ : L −→ C be the map that corresponds to δ. Since δ is a

coaction of C on F(X) for every X , we have two equal maps (δ ⊗ id)δ =

(id ⊗ ∆)δ : F(X) −→ F(X) ⊗ C ⊗ C. These maps should correspond to the

same map L −→ C ⊗ C, which means ∆Cϕ = (ϕ ⊗ ϕ)∆L. The commutativity

of ϕ with the counits also follows from the universal property of L.

Thus, given a category C and a functor F : C −→ Mod-R with image in

the subcategory of f.g. projective modules, then F factors through a functor

F̄ : C −→ comod-L, and the forgetful functor. This is the first part of the

Tannaka-Krein duality. The second part, which is usually more difficult, is to

prove that F̄ is an equivalence if C is a “good” abelian category.

From now on we shall assume that k is a field. Recall that a k-linear abelian

category C is said to be locally finite (over k) if each its Hom-set is finite

dimension over k and each object has the composition series of finite length.

Definition: Let R be a k-algebra and L be an R-coring. L is said to be (right)

semi-transitive if the following conditions are satisfied:

(i) each right L-comodule is projective over R.

(ii) each L-comodule is a filtered limit of subcomodule which is finitely

generated over R.

(iii) the category comod-L of right L-comodules which are finitely generated

as R-modules is locally finite over k.

Theorem 2.1.2 ([2], see also [1, Theorem 5.2]): Let k be a field and C be a

(small) k-linear abelian category which is locally finite. Let F : C −→ mod-R

be an exact faithful functor with image in the subcategory of f.g. projective

modules. Let L = Coend(F). Then L is a semi-transitive coring and the

functor F̄ is an equivalence of abelian categories. Conversely, let L be a semi-

transitive coring and F : comod-L −→ mod-R be the forgetful functor. Then F

is faithful, exact and has image in the category of projective modules of finite

rank and L ∼= Coend(F).

2.2. Tannaka-Krein duality for bialgebroids. Let C be a k-linear cat-

egory and F : C −→ R-Bimod a functor with image in the subcategory of left

rigid R-bimodules (i.e., f.g. projective as right R-modules). Then we can con-

struct the Coend of F , denoted by L. There are several actions of R on L which

we will specify now.
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Recall from Subsection 1.3 that the left dual F(X)∗ to F(X) is also an R-

bimodule. We shall use the convention of 1.3 for denoting the actions of R on

F(X)∗ ⊗k F(X). The actions of R on L0 will be denoted accordingly. Since

the maps F(f)∗ ⊗ id and id⊗F(f) in the diagram (2.3) commute with all the

(left and right) actions σ and τ , there are natural actions of R on L which

will be denoted accordingly. As shown in Subsection 2.1, L with respect to the

bimodule structure given by (σ, τ) is an R-coring.

Lemma 2.2.1: Let F : C −→ R-Bimod be a functor with image in the subcat-

egory of left rigid bimodules. Then L = Coend(F) is a coalgebroid.

Proof. As shown in the previous subsection, L is an R-coring with respect to

the actions (σ, τ). It remains to show that ∆ is a morphism of R−R-bimodules

and that ε satisfies ε(τ(r)a) = ε(aσ(r)), ∀r ∈ R, a ∈ L.

To see that ∆ is a morphism of R − R-bimodules, it is sufficient to notice

that in the construction of L (diagrams in (2.3)) all maps are R−R-bimodules

morphisms and for each object X ∈ C, the coproduct

∆X : F(X)∗ ⊗k F(X) −→ F(X)∗ ⊗k F(X)⊗R F(X)∗ ⊗k F(X)

is a morphism of R − R-bimodules, for F(X)∗ ⊗k F(X) is a coalgebroid (see

Subsection 1.3).

Similarly, the counit εX : F(X)∗ ⊗k F(X) −→ R satisfies εX(τ(r)a) =

εX(aσ(r)) and moreover, for any pair of objects X,Y ∈ C, a morphism

f : X −→ Y induces a morphism εf : F(Y )∗ ⊗k F(X) −→ R which is linear

with respect to the actions (σ, τ) and satisfies εf (τ(r)a) = εf (aσ(r)). Therefore,

we have commutative diagrams of the form

(2.5) F(Y )∗ ⊗k F(X)
F(f)⊗id //

εf

&&MMMMMMMMMMM

id⊗F(f)

��

F(X)∗ ⊗k F(X)

εX

xxqqqqqqqqqqqq

��

R

F(Y )∗ ⊗k F(Y )

εY

88qqqqqqqqqqq
// L .

ε

ffM
M

M
M

M
M

M

By construction, L is a quotient of L0, which is the direct sum ofF(X)∗⊗kF(X),

X ∈ C. We therefore conclude that the induced map ε : L → R also satisfies

the equation ε(τ(r)a) = ε(aσ(r)). Thus, L is an R-coalgebroid.
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Lemma 2.2.2: Let C be an R-coalgebroid. Let δ ∈ Nat(F ,F⊗RC) be a natural

transformation, which is a family of coactions of a coalgebroid C satisfying

equation (1.13). Then δ corresponds though the isomorphism in (2.1) to a

morphism L −→ C of coalgebroids.

Proof. A coaction of a coalgebroid C on a left rigid bimodule F(X), which

satisfies (1.13), induces a morphism of coalgebroids δ̄ : F(X)∗ ⊗k F(X) −→ C.

Consequently the map

∑

X∈C

δ̄X : L0 =
⊕

x∈C

F(X)∗ ⊗k F(X) −→ C

is also a homomorphism of R-coalgebroids. On the other hand, according to

Lemma 2.1.1, there exists a homomorphism of R-corings ϕ : L −→ C which fits

in the following commutative diagrams for all X ∈ C

L0
//

∑

X∈C
δ̄X   A

AA
AA

AA
A

L

ϕ

��
C.

Since the map L0 −→ L is surjective, the R-linearity (with respect to all actions)

of ϕ follows from the R-linearity of the maps L0 −→ L and L0 −→ C. Thus ϕ

is a homomorphism of R-coalgebroids.

We recall that the tensor product � was introduced in Subsection 1.5.

Proposition 2.2.3: Let F and G be functors C −→ R-Bimod with images in

the category of left rigid bimodules. Let L = Coend(F) and K = Coend(G).

Then

(2.6) Coend(F ⊗R G) ∼= L�K.

Proof. We still keep the notation for the actions of R on M∗ ⊗k M , M ∈

R−R-bimod, as in Subsection 1.3. We notice the following isomorphism for

the �-product

(M τ⊗
τ N)∗ ⊗k (M τ⊗

τ N) ∼= (M∗ ⊗k M) � (N∗ ⊗k N)(2.7)

(ψ ⊗R φ)⊗k (m⊗R n) 7→ (φ⊗k m) � (ψ ⊗k n).
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For any morphisms f : X −→ Y, g : U −→ V in C, by means of (2.7) we have

the following diagram

(2.8)

(F(Y )⊗R G(V ))∗ ⊗k (F(Y )⊗R G(V ))
∼=

&&MMMMMMMMMM

(F(Y )∗ ⊗k F(Y )) � (G(Y )∗ ⊗k G(V ))

��
(F(Y )⊗R G(V ))∗ ⊗k (F(X)⊗R G(U))

id⊗kF(f)⊗kG(g)

AA������������������

(F(f)⊗kG(g))∗⊗kid

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

L0 �K0

(F(X)∗ ⊗k F(X)) � (G(U)∗ ⊗k =G(U))

OO

(F(X)⊗R G(U))∗ ⊗k (F(X)⊗R =G(U))

∼=

88qqqqqqqqqq

Using the right exactness of the tensor product we see that L�K is the maxi-

mum quotient of L0⊗K0 that makes all the above diagrams commutative. The

claim of the proposition follows.

Remark: One can easily generalize the above proposition for more functors.

Assume now that F : C→ R-Bimod is a monoidal functor, which means there

exists an R-bilinear natural isomorphism

θX,Y : F(X)⊗R F(Y )→ F(X ⊗ Y )

satisfying the following identity (we assume for simplicity that C is strict, i.e.,

the structure morphisms are identity morphisms)

(2.9) F(X)⊗R F(Y )⊗R F(Z)
θX,Y ⊗RidF(Z) //

idF(X)⊗RθY,Z

��

F(X ⊗ Y )⊗R F(Z)

θX⊗Y,Z

��
F(X)⊗R F(Y ⊗ Z)

θX,Y ⊗Z

// F(X ⊗ Y ⊗ Z)

and there exists an isomorphism η : F(I)→ R (I denotes the unit object in C)

satisfying

(2.10) θI,X = η ⊗R idX , θX,I = idX ⊗R η
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It follows easily from definition that monoidal functors preserve rigidity. In

fact we can always choose evF(X) and dbF(X) to be F(evX) and F(dbX), re-

spectively, in case X is (left) rigid.

Theorem 2.2.4: Let C be a (strict) monoidal category and F : C −→ R-Bimod

be a monoidal functor with image in the subcategory of left rigid bimodules.

Let L = Coend(F). Then L is a bialgebroid. If C is left rigid, then L is a Hopf

algebroid. If C is right rigid, then L is an opposite Hopf algebroid.

Proof. We first show that L is an R-bialgebroid. The product on L is defined

as follows. Consider the natural transformation

F(X)⊗R F(Y ) −→ F(X ⊗ Y ) −→ F(X ⊗ Y )⊗R L −→ F(X)⊗R F(Y )⊗R L.

According to Proposition 2.2.3, this natural transformation corresponds to a

morphism m : L � L → L, which according to Lemma 2.1.1 is a morphism of

R-coalgebroids. In other words, by means of the diagram in (2.8), m is the

unique map L� L→ L which satisfies the following diagram for all X,Y ∈ C:

(2.11) (F(X)⊗R F(Y ))∗ ⊗k (F(X)⊗R F(Y )) //

∼=

��

L

(F(X)∗ ⊗k F(X)) � (F(Y )∗ ⊗R F(Y )) // L� L.

m

OO

Further, since F(I) ∼= R, R is a comodule over L. The coaction R → R ⊗R L

yields a morphism of R-coalgebroids u : R⊗k R→ L. It is easy to deduce from

equations (2.9) and (2.10) and the universal property of L the associativity of

m and the unital property of u. Thus L is an R-bialgebroid.

Assume that C is left rigid. We shall construct the antipode. Recall that L is

a quotient of L0, which is the direct sum of F(X)∗ ⊗R F(X). Set M := F(X).

For an element ϕ ⊗k m of M∗ ⊗M we shall use the same notation to denote

its image in L. Next, recall that the defining relations for L are obtained

from morphism in C. In particular, we deduce from the canonical morphism

evX : X∗ ⊗X → I the following relation on L. Notice that

evX
∗ : I → (X∗ ⊗X)∗ ∼= X∗ ⊗X∗∗

is nothing but dbX∗ : I → X∗ ⊗X∗∗. By means of (2.3) for the morphism evX
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and using (2.7), we have the following commutative diagram, whereM := F(X),

(2.12) R ⊗k (M∗ ⊗k M)
id⊗evM //

evM∗⊗id

��

R⊗k R

(s⊗t)

��
(M∗ ⊗R M∗∗)⊗k (M∗⊗R) //

∼=

��

L

(M∗∗ ⊗k M
∗) � (M∗ ⊗k M) // L� L.

m

OO

Let {ϕj}, {η
j} be dual bases with respect to dbM∗ , that is dbM∗ =

∑

j ϕj⊗η
j ∈

M∗ ⊗M∗∗ (see Subsection 1.3). Then (2.12) amounts to the following relation

(2.13)
∑

j

(ηj ⊗k ϕ) ◦ (ϕj ⊗k m) = τ(ϕ(m))1,

where 1 denotes the unit element in L and ◦ denotes the product on L. Similarly,

by using the morphism dbX : I → X ⊗X∗ we obtain the following relation on

L

(2.14) (ϕ⊗k mi) ◦ (η ⊗k ϕ
i) = σ(η(ϕ))1,

where {mi} and {ϕi} are dual bases with respect to the map

dbM : R→M ⊗R M∗(M = F(X))), ϕ ∈M∗, η ∈M∗∗.

We define now the antipode ∇. Recall that the map dbk,M : k → M ⊗R M∗

was defined in Subsection 1.3 by dbk,M (1) =
∑

i mi ⊗ ϕ
i. Define the map ∇X

for M = F(X)

(2.15) M∗ ⊗k M

id⊗dbk,M∗⊗id

��

∇X // L σ⊗σ L

M∗ ⊗k M
∗ ⊗R M

∗∗ ⊗k M ∼=
// (M∗∗ ⊗k M

∗) σ⊗σ (M∗ ⊗k M),

OO

where, in the tensor product M∗∗⊗kM
∗, we use the convention that the action

on M∗ = F(X∗) is denote by τ and the action on M∗∗ is denoted by σ. It is
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straightforward to check the commutativity of the following diagram

F(Y )∗ ⊗k F(X)
F(f)∗⊗id

//

id⊗F(f)

��

F(X)∗ ⊗k F(X)

∇X

��
F(Y )∗ ⊗k F(Y )

∇Y

// L σ⊗σ L.

Thus the universal property of L yields a morphism ∇ : L→ L σ⊗σ L which we

will show to be the antipode of L. Explicitly we have

(2.16) ∇(ϕ⊗m) = (ηj ⊗k ϕ) σ⊗σ (ϕj ⊗k m),

where the dual bases {ηj, ϕj} are defined above. Now, the equation (1.25),

(1.26) for ∇ can be easily deduced from (2.13), (2.14). Let us show (1.25) for

h = ϕ⊗k m. The left hand side of (1.25) is equal to

(ηj ⊗k ϕ) ◦ (ϕj ⊗k mi τ⊗
σ (ϕi ⊗k m)) = ϕ(mi)(ϕ

i ⊗k m) = ϕ⊗k m,

where in the first equality we used (2.14). We thus showed that L is an R-Hopf

algebroid.

If C is right rigid (in this case the image of F lies in the subcategory of rigid

bimodules), the opposite antipode is induced from the maps

M∗ ⊗k M

id⊗db∗M⊗id

��

∇̄M // L τ⊗
τ L

M∗ ⊗k
∗M ⊗R M ⊗k M ∼=

// (M ⊗k
∗M) τ⊗

τ (M∗ ⊗k M),

OO

where M = F(X), X ∈ C.

Corollary 2.2.5: Let C be a small locally finite k-linear abelian monoidal

category and F : C −→ R-Bimod be a faithful exact, monoidal functor with

image in the subcategory of right f.g. projective modules. Let L = Coend(F).

Then L is semi-transitive coring with respect to the actions (τ, σ) and F in-

duces a monoidal equivalence between C and comod-L. Conversely, let L be a

bialgebroid, semi-transitive as a coring with respect to the actions (τ, σ), and

F be the forgetful functor into the category of R-bimodules. Then F has image

in the subcategory of left rigid bimodules and L ∼= Coend(F).

Proof. We first notice that if F : C→ D is at the same time a monoidal functor

and an equivalence, then F is a monoidal equivalence (i.e. the quasi-inverse to
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F is also a monoidal functor). Indeed, let θ and η be the structure morphism

for F as in (2.9) and (2.10). By definition of the quasi-inverse we have the

natural isormophims FG(U) ∼= U and GF (X) ∼= X , cf. [10, Section IV.4]. Then

(still assuming the categories to be strict for simplicity) we define the monoidal

functor structure for the quasi-inverse G of F as follows:

ζU,V : G(U)⊗ G(V ) ∼= GF(G(U) ⊗ G(V ))
G(θ−1)
−→ G(U ⊗ V )(2.17)

ξ : G(ID)
η−1

−→ GF (IC) ∼= IC.(2.18)

Assume that we have F : C −→ R-Bimod as required. Let L be the Coend of

F . Then, by virtue of Theorem 2.1.2, L is semi-transitive as an R-coring with

respect to the pair of actions σ, τ and the induced functor F̄ is an equivalence

of abelian categories.

On the other hand, by virtue of Theorem 2.2.4, L is an R-bialgebroid and

F̄ is a monoidal functor to the category of L-comodules, thus F̄ is a monoidal

equivalence.

Assume that the bialgebroid L is semi-transitive coring with respect to the

actions (τ, σ). Then the forgetful functor has image in the subcategory of rigid

bimodules. Let L′ be the Coend of this functor, we have a morphism of bial-

gebroids L′ −→ L which is an isomorphism of corings, by virtue of Theorem

2.1.2, hence L′ ∼= L as bialgebroids.

In what follows we will consider only Hopf algebroids with opposite antipode.

Definition (Semi-transitive Hopf algebroids): A Hopf algebroid H is said to be

semi-transitive over R if the following conditions are satisfied:

(i) H is semi-transitive as an R-coring with respect to the actions (σ, τ).

(ii) an H-comodule is left rigid as an R-bimodule if and only if it is right

rigid.

Theorem 2.2.6: Let C be a small locally finite k-linear abelian rigid monoidal

category and F : C −→ R-Bimod be a faithful exact, monoidal functor. LetH =

Coend(F). Then H is a semi-transitive Hopf algebroid (with opposite antipode)

and F induces a monoidal equivalence between C and finitely generated (over

R) right H-comodules. Conversely, let H be a semi-transitive Hopf algebroid

and F be the forgetful functor from the category of finitely generated (over R)

H-comodules to R-Bimod. Then H ∼= CoendF .
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Proof. H = Coend(F) is obviously a Hopf algebroid with opposite antipode.

The equivalence is established by the corollary above. Also, from the construc-

tion, we see that H is a semi-transitive as a coring with respect to the actions

(σ, τ).

It remains to show that an H-comodule is left rigid if and only if it is right

rigid. Let M be a right H-comodule which left rigid as R-bimodule. Then by

the equivalence, M ∼= F(X) for a certain X ∈ C. Hence M is rigid since X is

rigid. Conversely, if M is a right rigid R-bimodule, then ∗M is left rigid. The

opposite antipode ∗M has a structure of H-comodule, hence ∗M ∼= F(Y ) for a

certain Y in C. Therefore M ∼= F(Y ∗); hence rigid.

Now assume that H is a semi-transitive Hopf algebroid. Then the forgetful

functor F : comod-H −→ R-Bimod has image in the subcategory of rigid bi-

modules. Since H is semi-transitive, this functor is exact (and obviously faithful

being forgetful functor). Thus, we can reconstruct the Coend of this functor.

From Theorem 2.1.2, Coend(F ) ∼= H as corings; hence they are isomorphic as

Hopf algebroids.

Remark: The condition (ii) in the definition of semi-transitive Hopf algebroid

is not natural. In fact, it is used only for the formulation of Theorem 2.2.6.

In other words, Theorem 2.2.6 states that one can “fully” reconstruct a Hopf

algebroid from a faithful, exact monoidal functor, in the sense that if we repeat

this process we will obtain the same Hopf algebroid. However, we do not have

a good criterion for a Hopf algebroid to be reconstructible from its category of

comodules. The reader is also referred to [1] for some problems related to the

notion of transitivity.

Theorem 2.2.6 has an interesting consequence on characterizing abstract rigid

monoidal categories. First, we mention a result of [4].

Let C be a small abelian rigid monoidal category with an injective cogenerator.

Then there exists an exact faithful monoidal functor C −→ R-Bimod for a certain

ring R.

By using the above result of reconstruction and representation, we can easily

deduce the following result

Corollary 2.2.7: Let C be a small k-linear locally finite abelian rigid monoidal

category with an injective cogenerator. Then there exists a ring R such that C
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is monoidally equivalent with the category of f.g. projective R-comodules over

a certain semi-transitive Hopf algebroid over R.
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